Operating Principle

GEOKON® vibrating wire displacement transducers are designed to measure displacements across joints and cracks in concrete, rock, soil and structural members.

In essence, the transducer consists of a vibrating wire in series with a tension spring. Displacements are accommodated by a stretching of the tension spring, which produces a commensurate increase in wire tension.

The wire and spring are connected to a free-sliding rod which protrudes from, and is free to slide inside, a protective outer tube. An O-ring seal prevents water from entering.

The frequency signal is transmitted through the cable to the readout location, conditioned, and displayed on portable readouts or dataloggers.

Advantages and Limitations

The 4400 Series Displacement Transducers are fabricated entirely from stainless steel and are waterproof to 1.75 MPa, which, coupled with their excellent long-term stability, guarantees reliability and performance in even the harshest environments.

An advantage of vibrating wire displacement transducers over more conventional linear potentiometers (or LVDT's) lies mainly in the use of a frequency, rather than a voltage, as the output signal. Frequencies may be transmitted over long lengths of electrical cable without appreciable degradation caused by variations in cable resistance or leakage to ground. This allows for a readout location that may be over a thousand meters from the transducer.

Thermistors are provided with all transducers for temperature measurement.

Applications

The 4400 Series are designed to measure or monitor the...

- Expansion or contraction of a joint
- Strains in tendons and steel cables
- Movement across surface cracks and joints
- Closures in underground excavations, tunnels, etc.
- Displacements associated with landslides
- Movement of boulders, snow, etc. on unstable slopes

Model 4420-3 Low Profile Crackmeter for measurements in the “Z” direction.

Model 4420 Crackmeters configured as a single 3-D Crackmeter.

Model 4400 Embedment Jointmeter (center) and Model 4420 Crackmeter (rear).
The Model 4410 Strandmeter is designed to measure strains in tendons and steel cables, including bridge tendons, cable stays, ground anchors, tiebacks, etc. Two clamps at each end of the strandmeter hold it firmly onto the cable. Various size clamps are available.

The Model 4420 Crackmeters are designed to measure movement across joints such as construction joints in buildings, bridges, pipelines, dams, etc.; tension cracks and joints in rock and concrete.

The ends of the sensor are attached to anchors (with ball joints) that have been grouted, bolted, welded or bonded on opposite sides of the crack or fissure to be monitored. 3-D mounting brackets, which allow measurement of displacements in three orthogonal directions, and special clamps for attachment to a variety of earth reinforcements and geogrids, are also available.

Special versions of the Model 4420 are offered including low profile models (Model 4420-3); versions for underwater use, where water pressures exceed 1.7 MPa; and versions for use in cryogenic or elevated temperature regimes (please contact GEOKON, INCORPORATED for details).

The Model 4422 Micro Crackmeter is a miniature crackmeter intended to measure displacements across surface cracks and joints. It has been specially designed for applications where access is limited and/or where monitoring instrumentation is to be as unobtrusive as possible (e.g. on historical structures or buildings).
The Model 4425 Convergence Meter is designed to detect deformation in tunnels and underground caverns by measuring the contraction (or elongation) between 2 anchor points fixed in the walls of the tunnel or cavern.

The Model 4425 consists of a spring-tensioned vibrating wire transducer assembly, turnbuckle, 6 mm diameter connecting rods (stainless steel, fiberglass or graphite), rod clamp, and a pair of anchor points. Changes in distance between the 2 anchors are conveyed by the connecting rods and measured by the transducer.

The Model 4425 can operate in horizontal, inclined or vertical orientations. In areas where construction traffic is expected or where the instrument may be left in an exposed location, some form of protective housing should be considered.

The Model 4427 Long-Range Displacement Meter is ideally suited for the measurement of large displacements associated with landslides. The Model 4427 can also be used for monitoring the movement of boulders, snow, etc., on unstable slopes.

The Model 4427 consists of a vibrating wire displacement transducer coupled to a spring motor drive by means of a lead screw. As the cable is pulled, the motor drum rotates and advances the lead screw. Thus the rotation is converted into a linear displacement which is measured by the vibrating wire displacement transducer.

The Model 4450 Displacement Transducer provides remote readout capability for Borehole Extensometers (see the Model A-3, A-4, A-5, A-6 Rod-Type Borehole Extensometers data sheet for more information). They are particularly useful where other types of vibrating wire sensors are used and/or for installations where long cable runs are required.

The Model 4450 can also be installed between borehole anchors, in conjunction with the requisite length connecting rod, to provide a permanent, in-place incremental extensometer (contact GEDKON, INCORPORATED for details).
Technical Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Standard Ranges</th>
<th>Resolution</th>
<th>Accuracy 3</th>
<th>Nonlinearity</th>
<th>Temperature Range 1</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4400 Embedment Jointmeter</td>
<td>12.5, 25, 50, 100 mm 1</td>
<td>0.025% F.S.</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Lengths: 441, 441, 569 mm</td>
</tr>
<tr>
<td>4410 Strandmeter</td>
<td>3 mm (15,000 με) 1</td>
<td>< 5 με.</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Length: 203 mm</td>
</tr>
<tr>
<td>4420 Crackmeter</td>
<td>12.5, 25, 50, 100, 150 mm 1</td>
<td>0.025% F.S.</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Lengths: 318, 343, 397, 555, 645 mm</td>
</tr>
<tr>
<td>4420-3 Low Profile Crackmeter</td>
<td>25 mm2</td>
<td>0.01% F.S.</td>
<td>±1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Dimensions (L × W × H): 292 × 50 × 38 mm</td>
</tr>
<tr>
<td>4422 Micro Crackmeter</td>
<td>4 mm (±2 mm)</td>
<td>0.001 mm</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Length: 120 mm</td>
</tr>
<tr>
<td>4425 Convergence Meter</td>
<td>12.5, 25, 50, 100, 150 mm 1</td>
<td>0.025% F.S.</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Length: varies with application</td>
</tr>
<tr>
<td>4427 Long-Range Displacement Meter</td>
<td>1, 2 m (without resetting)</td>
<td>0.025% F.S.</td>
<td>±1.0% F.S.</td>
<td>—</td>
<td>–30°C to +80°C</td>
<td>Enclosure Dimensions (L × W × H): 610 × 152 × 152 mm</td>
</tr>
<tr>
<td>4430 Deformation Meter</td>
<td>25, 50, 100, 150, 300 mm 1</td>
<td>0.025% F.S.</td>
<td>±1.0% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Length: 610 mm (minimum)</td>
</tr>
<tr>
<td>4435 Soil Extensometer</td>
<td>25, 50, 100, 150, 300 mm 1</td>
<td>0.025% F.S.</td>
<td>±1.0% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Length: 610 mm (minimum)</td>
</tr>
<tr>
<td>4450 Displacement Transducer</td>
<td>12.5, 25, 50, 100, 150, 200, 230, 300 mm 1</td>
<td>0.025% F.S.</td>
<td>±0.1% F.S.</td>
<td>< 0.5% F.S.</td>
<td>–20°C to +80°C</td>
<td>Lengths: 187, 206, 272, 409, 474, 672, 688, 939 mm</td>
</tr>
</tbody>
</table>

1Other ranges available on request. | 2Other ranges (< 25mm) available on request. | 3Accuracy established under laboratory conditions. | 4Accuracy using polynomial. | 5Length dimensions are in mid-range position. | 6Length with shaft fully retracted.